If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+60-99=0
We add all the numbers together, and all the variables
4x^2-39=0
a = 4; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·4·(-39)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{39}}{2*4}=\frac{0-4\sqrt{39}}{8} =-\frac{4\sqrt{39}}{8} =-\frac{\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{39}}{2*4}=\frac{0+4\sqrt{39}}{8} =\frac{4\sqrt{39}}{8} =\frac{\sqrt{39}}{2} $
| 55.30=7.9c | | 15000=(652.50-1.035x)/1.05+x | | 84=14a | | 10x+8/3=2/7 | | 2–15n=5(-3n+2) | | -0.2(x-1.3)=-0.76 | | -3(x-5)^2+12=12 | | -(x/6)+(3x/5)=7/18 | | 7^x=47 | | 15,000=((652.50-652.50+1.035x)/1.035) | | n=19.21+12.8 | | 80=20x2 | | 3(3x-1)-(7-4x)=20 | | 83=a+49 | | -20(c-3)^2+180=0 | | 15,000=((652.50-1.035x)/1.05)+((652.50-652.50+1.035x)/1.035) | | (-x/6)+(3x/5)=7/18 | | q=-18.4+(-28.7) | | 1/2-4x=8 | | 9n-9=3n+1 | | 180-17x+8x+27=126 | | 4/6y-6=-2 | | -8p−-p+-13p+-11=9 | | -1.035x+1.05x=15097.5 | | 5k+2/3=8 | | 4(2x+1)+8=6(x+2)+2x | | 7x+6=5x+14 | | (x+4)(3x^2+2x+2)=0 | | (x+4)(3x^2+2x+2)=x | | -9.2-(6.03)=y | | (-3/8x+5)+(1/8x-3)=0 | | 60+b=100 |